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Abstract—Cued speech (CS) is a novel visual coding system,
which combines lip reading with several specific hand codings to
help hearing-impaired people to communicate effectively. This
work focuses on the audio/text-driven CS gestures (i.e., con-
tinuous lip and hand gestures movements) generation. Previous
work used template-based statistical methods for the French CS
generation. However, these methods are fragile since they need
careful hand-crafted pre-processing to fit models, resulting in
poor robustness. Furthermore, the natural rhythm in generated
CS gesture sequences, which is essential for a coding system
of spoken languages, was overlooked in prior studies. To solve
the above-mentioned problems, we innovatively propose a two-
branched rhythmic CS gesture generation framework, which
contains a multi-modal adversarial semantic generator (MASG)
to generate accurate multi-modal CS gestures (i.e., lip, hand
shape and hand position movements), and an audio-driven
rhythm generator (ARG) to extract the rhythm information.
Moreover, we design a new Gesture Audio Difference (GAD)
metric to evaluate the rhythm coherence considering the issue
of asynchrony between CS hand gestures and lip movements.
Extensive experimental results are presented on two datasets of
two tasks (a CS dataset named MCCS-2024 and a co-speech
TED dataset) with comprehensive ablation analysis and user
study, demonstrating the effectiveness of our method. The code
and dataset with multi-modal annotations were made public at
https://mccs-2024.github.io/.

Index Terms—Cued Speech, Speech Gesture Generation,
Multi-modality, Rhythm

I. INTRODUCTION

To tackle the disadvantage of lip reading and enhance the
reading ability of hearing-impaired people, in 1967, Cornett
developed the Cued Speech (CS) system [1], which uses
hand codings to complement lip reading by providing clear
visibility of all phonemes in a spoken language [2], [3]. For
example, in Mandarin Chinese CS (MCCS) [4] (see Fig. 1),
it uses five hand positions to encode vowel groups and eight
hand shapes to encode consonant groups. With CS, hearing-
impaired individuals can distinguish sounds that may appear
identical on lips, such as [u], [y], by utilizing hand information.
Therefore, they can understand spoken languages using solely
visual information. Another commonly used communication
method is Sign Language (SL) [5]. It is essential to note that
CS is not a visual language like SL but a spoken speech coding
system. Therefore, it can be learned much quicker than SL,
according to studies [6], [7].
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Fig. 1. The chart for the Mandarin Chinese CS (figure from [8]).

While there are numerous research efforts in CS Recog-
nition [9], [10], as far as we know, CS gesture generation
is under-explored because of the limited size of CS datasets
and the expensive annotation cost of complicated CS multi-
modal gestures. In addition, CS gesture is a fine-grained
gesture generation task (e.g., as shown in Fig. 1, CS hand
position “mouth” and “chin” represent different vowels, but
their location is very close), making the task challenging.

Previous work [11], [12] used template-based statistical
methods for the French CS generation. However, these meth-
ods are fragile since they need careful hand-crafted pre-
processing to fit the algorithm, and thus the robustness is poor.
Deep Learning (DL)-based methods for CS gesture generation
still suffer from the limited availability of the data and multi-
modal annotations, leading to low accuracy of the generated
CS gestures. Existing research on gesture generation, such as
SL [13] and co-speech [14] generation, cannot fully meet the
needs of our CS gesture generation.

As a coding system for spoken languages, CS requires
natural rhythm dynamics to ensure complete semantic expres-
sion [15]. This involves generating multi-modal CS speech
gestures—specifically hand shapes and positions that match
the rhythm of speech. Unlike previous works, it’s crucial to
account for the lip-hand asynchrony phenomenon [16], where
hand movements precede lip movements. This asynchrony
varies depending on the cuer1 [16]–[18] and must be reflected
in the generated CS gestures to align lip and hand movements
with human speech rhythm accurately.

1People who perform CS are called the cuer.



Fig. 2. The framework of our end-to-end multi-modal rhythmic CS hand gesture generation framework. The whole framework consists of two branches: (a)
is a rhythmic gesture branch (i.e., ARG) that learns the mapping from speech audio to rhythmic dynamics, and (b) is a semantic gesture generation branch
(i.e., MASG) that is constructed as a multi-modal generator based on semantic signals in audio speech and text to generate CS gestures. The content in the
dashed line means the discriminator, which is only used in the training process.

To overcome the two above-mentioned challenges (i.e., low
accuracy and rhythm scarcity of the generated CS gestures),
this work aims to propose the first end-to-end deep learning-
based method for multi-modal CS hand gesture generation.
We propose a novel two-branch framework for generating
rhythmic CS hand gestures. An overview of the framework
can be seen in Fig. 2. It contains a Multi-modal Adversarial
Semantic Generator (MASG) that produces accurate multi-
modal CS hand gestures, and an Audio-driven Rhythmic
Generator (ARG) that considers the overall rhythm of the
motion to extract rhythm information. Moreover, to better
evaluate the rhythmic effect by considering the temporal
asynchrony between CS hand gestures and lip reading, we
further design a new Gesture Audio Difference (GAD) metric
to evaluate the rhythm coherence. It should be noted that the
proposed GAD can also be used to measure other multi-modal
speech gesture asynchrony problems, such as the alignment
between audio speech and co-speech gestures.

It should be noted that, in this work, we propose a GAN-
based method [19] rather than the diffusion-based method
for gesture generation because diffusion models [20], [21]
usually rely heavily on a strong encoder [22], with most works
utilizing text encoders like CLIP [23]. However, the gesture-
text CS dataset is not enough to train a strong CLIP model for
our task. Using the existing pre-trained CLIP may suffer from
the domain gap (i.e., the image-text mapping for CS is image-
phoneme, which is different from the image-text mapping of
the existing CLIP). However, the GAN-based methods can
generate a realistic gesture without needing a large amount of
data, thus making them more suitable for the CS generation.

In summary, the main contributions of this work can be
summarized as follows. 1) We design a novel multi-modal
rhythmic gesture generation framework, which consists of two

branches for accurate and rhythmic gesture generation. 2)
Taking into account the temporal asynchrony between CS hand
gestures and lip reading, we specifically propose a new metric
GAD to evaluate the rhythmic coherence and asynchrony of
the generated multi-modal CS gestures. 3) Extensive experi-
ments are conducted on two datasets (including MCCS-2024
and one general co-speech TED Gesture dataset). Results show
that the proposed method achieves state-of-the-art (SOTA)
performance on both datasets under different metrics. Ablation
studies and user studies further verify the effectiveness of the
proposed model.

II. METHOD

A. Multi-modal Adversarial Semantic Generator
1) Text Feature Extraction: We first decompose the text as a

sequence of phonemes, where the number of phonemes corre-
sponds to the frame rate of the video. This is the same length
as the video, which contains lip and hand movements. The
word embedding layer converts all word sequences into 300-
dimensional word vectors. The Chinese word embedding layer
is trained based on the Chinese Wikipedia corpus2 containing
over 9 million sentences, and it is derived from the well-known
FastText [24], which is a pre-trained word embedding that
generates word vectors. Then, we use a temporal convolutional
network (TCN) [25] to encode these word vectors for the text
modality.

To process the audio modality, we use Mel-frequency cep-
stral coefficients (MFCC) [26] as the audio feature.

2) Semantic Gesture Generator: Every gesture is com-
prised of 137 key landmarks, including 70 for the face, 42
for the hands, and 25 for the body’s posture. To maintain

2https://dumps.wikimedia.org/



consistency in the temporal duration, denoted as N , we
synchronize the duration of the input with that of the output
gesture. This synchronization allows our designed system to
analyze and process data frame by frame, facilitating the CS
generation.

Inspired by the non-saturating generative adversarial net-
work (NS-GAN) [19], we introduce a novel approach utilizing
a multi-layer bidirectional gated recurrent unit (GRU) network
[27] as the foundational architecture for our gesture generation
model. To train our gesture generator, we employ the following
loss function LGAN

G :

LGAN
G = −E[log(D(M̂))], (1)

where the discriminator D is used to differentiate between real
and generated gestures. Specifically, our model architecture
comprises a multilayer bidirectional GRU network, which
yields a binary outcome for each individual frame, culminating
in a fully connected (FC) layer that aggregates these binary
results. For every frame i, we merge the encoded text and
audio features into a single composite feature vector. The
generator then processes the merged feature to produce the
subsequent pose M̂i+1 sequentially.

The discriminator is trained using the loss function LD:

LD = −E[log(D(M))]− E[log(1−D(M̂))]. (2)

Through the alternating optimization of the generator and
discriminator, we aim to enhance the generator’s ability to fool
the discriminator. This iterative refinement process is designed
to yield a gesture generator of superior quality.

B. Audio-driven Rhythmic Gesture Generator
In addition to the accurate position of the gesture, the natural

temporal rhythm of the gesture motion is also an essential
part of CS gesture generation. We believe the corresponding
audio speech signal contains the rhythmic dynamics in CS,
contributing to visual and auditory coherence. In this work,
we introduce a new rhythmic gesture branch, which uses three
convolution layers as the rhythmic dynamics generator, to
match the dynamics with the CS rhythm further.

Loss for Rhythmic Dynamics Generator. The rhythmic
motion branch learns the rhythmic dynamics M̃ independent
of the ground truth gesture (M). The corresponding loss
function is defined as Lr = ||M̃ −

(
M − M̄

)
||, where M̄ is

the arithmetic mean of motions in M . The difference between
M and M̄ measures the magnitude of hand movement. Lr

ensures the generated result M̃ (based on audio signal) with
the proper offset to the mean gesture, which helps generate the
motion dynamics without affecting the ground truth gesture.

Total Loss. We apply the reconstruction loss to the final
gesture M∗ = M̂ + M̃ : Lrec = ||M∗ −M ||. The total loss
is as follows:

L = λ1L
Huber
G + λ2L

GAN
G + λ3LD + λ4Lr + λ5Lrec , (3)

where λj (j = 1, · · ·, 5) are the weights for each loss. LHuber
G =

1
N

∑N
i=1 H

(
Mi, M̂i

)
, where H is the Huber loss and N is

the length of frames in a video.

III. EXPERIMENTS

A. Datasets

In this work, we conducted experiments on the Mandarin
Chinese CS dataset (MCCS-2024) [28], [29], which contains
4000 CS videos from four native Chinese CS cuers and another
public Co-speech TED Gesture dataset [30]. The TED Gesture
dataset is a collection of 2D and 3D upper-body gestures
from English TED videos. The dataset includes 253,186 data
samples, with 80% for training, 10% for validation, and the
remaining 10% for testing.

B. Experimental Settings

The experiments are implemented using PyTorch, with four
A100 GPU cards for model training. We use Adam as our
optimizer, which is set to β1 = 0.5 and β2 = 0.999, and
the learning rate was 0.0002. The model was trained for 100
epochs. At the same time, we experimentally adjusted the
best hyperparameters (λ1 = 500, λ2 = 5, λ3 = 0.05, λ4 =
0.5, λ5 = 1.0) for loss function in Eq. (3). To guarantee stable
training, we set a 10 epochs warm-up period with (β = 0). In
GAD, we set τ =200ms for MCCS-2024, and τ =500ms for
TED and Trinity co-speech datasets.

C. Evaluation Metrics

The evaluation of the generated gestures is conducted quan-
titatively using four commonly used metrics, Percentage of
Correct Keypoint (PCK) [31], Mean Absolute Joint Errors
(MAJE) [32], Mean Acceleration Difference (MAD) [32], and
Fréchet Gesture Distance (FGD) [32]. Especially, to consider
the above-mentioned asynchronous coherence phenomenon for
lip and hand movements in CS, a new metric to measure the
rhythmic degree of generated gestures should be proposed.

Gesture Audio Difference Metric (GAD). We initially
present the rationale behind introducing the proposed gesture
audio difference metric. The existing metrics, such as Percent-
age of Matched Beats (PMB) [33], designed for measuring
rhythm in co-speech, are not suitable for CS as they lack
the consideration of audio-to-gesture correspondence. Another
commonly used metric, GA, fails to capture the coherence be-
tween lip and hand movements, which significantly influences
the rhythm of CS gestures. Specifically, in order to evaluate
whether the generated CS gestures are rhythmic or not, we
propose a new metric GAD:

GAD(P,A) =
1

N

N∑
i=1

1[||CP
i −CA

i ||1 < τ ], (4)

where the gesture and audio speech are denoted as P and A,
respectively. As the number of annotated temporal segments
of speech and gesture are the same, the number of segments
is denoted as N . Ci is the middle time instant of the segment,
which means a specific time at which a gesture or speech
happens. 1 is the indicator function that maps elements of
the subset (satisfies ||CP

i −CA
i ||1 < τ ) to one, and all other

elements to zero. Considering the asynchrony between audio
speech and CS hand movement, we set a threshold τ to ensure



TABLE I
EXPERIMENT RESULTS ON MCCS-2024 DATASET COMPARED WITH
SOTA METHODS. W/O TF AND W/O RD REPRESENT WITHOUT TEXT

FEATURE AND WITHOUT RHYTHMIC DYNAMIC, RESPECTIVELY. ↑ MEANS
THE HIGHER THE BETTER, ↓ MEANS THE LOWER THE BETTER.

Methods PCK (%)↑ FGD↓ MAJE (mm)↓ MAD (mm/s2)↓ GAD (%)↑
GES [37] 31.5 36.7 60.87 2.87 67.62
GTC [32] 33.2 34.1 58.46 2.65 71.25
S2AG [36] 37.8 31.9 53.75 1.92 74.57
RG [33] 43.2 29.5 49.53 0.97 74.57

Ours (w/o TF) 36.1 36.9 65.04 1.53 71.45
Ours (w/o RD) 43.9 31.2 53.32 0.95 76.68
Ours 45.7 28.3 37.21 0.67 84.68

their alignment. The threshold τ is determined by a statistical
study of hand preceding time [34], i.e., the mean value of
all time differences between the hand target instants and the
acoustic instants for all phonemes in the dataset.

IV. RESULT AND ANALYSIS

Our approach is compared with five recent gesture synthesis
methods: Style Gesture (SG) [35], Gestures from Trimodal
Context (GTC) [32], S2AG [36], Gesticulator (Ges) [37], and
Rhythmic Gesticulator (RG) [33].

A. Comparison with SOTA Methods

Results on MCCS-2024 Dataset. Table I summarizes the
performance of various methods on the MCCS-2024 Dataset.
Our proposed method demonstrates the lowest values for the
PCK, MAJE, MAD, and FGD metrics. Notably, our method’s
FGD values are significantly lower compared to other meth-
ods, indicating that the gestures synthesized by our methods
possess higher perceptual quality. The rapid increase in FGD
values in the absence of the text feature (w/o TF) highlights
the crucial role of the text feature and modality confusion
in gesture quality. Although the audio-only inference leads to
a decrease in generation performance, the generated gestures
are still deemed acceptable. In terms of rhythm performance,
our methods achieve the highest GAD values on MCCS-2024
datasets. The significant drop in GAD values without the
rhythm branch (w/o RD) highlights the crucial role of the
proposed rhythmic features.

Results on TED Datasets. To demonstrate the generaliza-
tion capability of our method to other audio-visual tasks, we
conduct experiments on the public TED Gesture dataset. As
shown in Table II, our method achieves SOTA results on these
two datasets as well. It is worth noting that the performance in
different metrics significantly drop when the text feature and
rhythmic branch are absent, which aligns with observations on
the MCCS-2024 dataset.

B. User Study

In addition, we design a detailed user study to assess the
generated CS gesture. We use three metrics, i.e., Accuracy,
Rhythm Quality (RQ), and Naturalness of the generated CS
gestures. More precisely, Accuracy measures how closely the
generated gestures align with the intended target or reference.
RQ evaluates the consistency and smoothness of the generated

TABLE II
EXPERIMENT RESULTS ON THREE DATASETS COMPARED WITH SOTA
METHODS ON TRINTY DATASETS. W/O TF AND W/O RD REPRESENT

WITHOUT TEXT FEATURE AND WITHOUT RHYTHMIC DYNAMIC,
RESPECTIVELY.

Methods PCK (%)↑ FGD↓ MAJE (mm)↓ MAD (mm/s2)↓ GAD (%)↑

S2AG [36] 43.4 3.73 26.95 3.03 75.57
RG [33] 51.7 2.04 18.13 2.29 89.54
Ours (w/o TF) 36.8 3.68 25.31 2.94 73.48
Ours (w/o RD) 53.2 2.04 16.32 2.58 88.32
Ours 54.1 1.92 17.26 2.42 91.14

gestures in relation to the rhythm of the accompanying audio.
Naturalness assesses the degree to which the generated CS
gestures resemble natural and human-like movements, avoid-
ing any signs of artificiality or robotic behavior.

A total of six CS teachers completed the questionnaire.
They were asked to rate each video in the questionnaire
on a score of 1 (worst) to 10 (best) for the three metrics.
To conduct the experiment, we randomly select 30 sets of
data, each consisting of a ground truth CS gesture video (i.e.,
gestures obtained by the Openpose detector based on original
CS videos), an audio-driven CS gesture video generated using
the baseline method, which corresponds to our approach but
does not incorporate text features and the ARG branch, and
our method (i.e., audio- and text-driven two branched CS hand
gesture generation method shown in Figure 2). We can see that
the CS hand gesture generated by our method (green bars)
outperforms the one generated by baseline (red bars) in three
evaluation metrics and is close to the ground truth (blue bars).

Fig. 3. User study results of the ground truth, baseline and Ours.

V. CONCLUSION

In this work, we propose a novel framework for generating
semantic accurate and rhythmic Chinese CS hand gestures.
This framework includes two branches specifically designed
for generating hand movements in a multi-modal manner. Ex-
tensive experiments are conducted to validate the effectiveness
of our proposed method. The results, both quantitative and
qualitative, demonstrate that our method can generate high-
quality CS hand gestures. In the future, we will explore the
diffusion model for automatic CS gesture generation in the
data limited scenario.
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